Enhancing predictive models for steam gasification: A comparative study of stoichiometric, equilibrium, data-driven, and hybrid approaches

Nestor Eduardo Sanchez Ramirez (Autor Corresponsal), Martha Isabel Cobo Angel (Segundo Autor), Juan Camilo Moreno Diaz (Primer Autor), Felipe Buendia (Tercer Autor)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Steam gasification offers a pathway to generate synthesis gas (syngas) rich in hydrogen (H2), a crucial element in efforts to decarbonize and mitigate greenhouse gas emissions. However, the intricate web of reactions involved
in the process demands predictive tools to enable its large-scale application. While models based on stoichiometry, chemical equilibrium, and data algorithms have made strides, previous works lack comprehensive comparative studies on their efficacy and adaptability. This study addresses this gap by developing and juxtaposing four models: stoichiometric, equilibrium-based, data-driven, and a hybrid approach to forecast steam gasification products against experimental data gleaned from a systematic literature review. Among these models, the hybrid variant emerges as the most accurate in predicting syngas composition, boasting an average root mean square error (RMSE) of 5.63 and an average R2 of 0.59. Moreover, it yields predictions for tar, char, and gas with respective RMSEs of 42.79 g/Nm3 syngas, 72.99 g/kg biomass, and 0.33 Nm3 syngas/kg biomass. Notably, the robust validation process of this model enhances its versatility while maintaining commendable prediction accuracy compared to the existing literature. Future enhancements could entail integrating advanced kinetic and equilibrium expressions and incorporating fresh experimental data into the training phases of datadriven models.
Idioma originalInglés
Páginas (desde-hasta)115151
Número de páginas13
PublicaciónRenewable and Sustainable Energy Reviews
Volumen210
DOI
EstadoPublicada - 4 dic. 2024

Focos Estratégicos

  • Bioeconomía, Energías renovables y Sostenibilidad (BEES)​

Clasificación de Articulo

  • Artículo completo de investigación

Indexación Internacional (Artículo)

  • ISI Y SCOPUS

Scopus-Q Quartil

  • Q1

ISI- Q Quartil

  • Q1

Categoría Publindex

  • A1

Huella

Profundice en los temas de investigación de 'Enhancing predictive models for steam gasification: A comparative study of stoichiometric, equilibrium, data-driven, and hybrid approaches'. En conjunto forman una huella única.

Citar esto