Learning Curves for Decision Making in Supervised Machine Learning - A Survey

Felix Mohr (Autor Corresponsal), Jan N. van Rijn (Segundo Autor)

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

Learning curves are a concept from social sciences that has been adopted in the context of machine learning to assess the performance of a learning algorithm with respect to a certain resource, e.g., the number of training examples or the number of training iterations. Learning curves have important applications in several machine learning contexts, most notably in data acquisition, early stopping of model training, and model selection. For instance, learning curves can be used to model the performance of the combination of an algorithm and its hyperparameter configuration, providing insights into their potential suitability at an early stage and often expediting the algorithm selection process. Various learning curve models have been proposed to use learning curves for decision making. Some of these models answer the binary decision question of whether a given algorithm at a certain budget will outperform a certain reference performance, whereas more complex models predict the entire learning curve of an algorithm. We contribute a framework that categorises learning curve approaches using three criteria: the decision-making situation they address, the intrinsic learning curve question they answer and the type of resources they use. We survey papers from the literature and classify them into this framework.

Idioma originalInglés
Páginas (desde-hasta)8371-8425
Número de páginas55
PublicaciónMachine Learning
Volumen113
N.º11
DOI
EstadoPublicada - dic. 2024

Focos Estratégicos

  • Sociedad Digital y Competitividad​ (SocietalIA)

Clasificación de Articulo

  • Artículo completo de investigación

Indexación Internacional (Artículo)

  • ISI Y SCOPUS

Scopus-Q Quartil

  • Q1

ISI- Q Quartil

  • Q2

Categoría Publindex

  • A1

Huella

Profundice en los temas de investigación de 'Learning Curves for Decision Making in Supervised Machine Learning - A Survey'. En conjunto forman una huella única.

Citar esto