Resumen
This study presents a comprehensive methodology that combines resampling and oversampling techniques to address the challenges of limited and unbalanced data, specically in the context of viral emergencies such as the COVID-19 pandemic. Utilizing advanced statistical techniques like Bootstrap and SMOTE, the study conducts a retrospective analysis of COVID-19 patients, identifying those at higher risk of mortality. The proposed methodology not only enhances the accuracy of predictions in scenarios with limited data but also facilitates better decision-making in clinical triage systems. By applying these methods, the study achieves early and accurate identication of high-risk individuals, optimizing resource allocation and timely medical interventions. The results demonstrate that this combination of statistical techniques effectively improves health systems and responses to new viral threats, providing a robust foundation for informed decision-making in medical emergencies.
| Título traducido de la contribución | Muestras pequeñas, nuevos virus, insumos para la toma de decisiones y metodología: Bootstrap y SMOTE |
|---|---|
| Idioma original | Inglés estadounidense |
| Páginas (desde-hasta) | 99-115 |
| Número de páginas | 17 |
| Publicación | Revista Colombiana de Estadistica |
| Volumen | 48 |
| N.º | 1 |
| DOI | |
| Estado | Publicada - 21 ene. 2025 |
Focos Estratégicos
- Vida Humana Plena (Vita)
Clasificación de Articulo
- Artículo completo de investigación
Indexación Internacional (Artículo)
- ISI Y SCOPUS
Scopus-Q Quartil
- Q3
ISI- Q Quartil
- Q4
Categoría Publindex
- C